
 Ta'limning zamonaviy transformatsiyasi 

www.tadqiqotlar.uz             1-to’plam noyabr 2023 

746 

WORKING WITH POINTERS AND DYNAMIC MEMORY IN THE 

C++ PROGRAMMING LANGUAGE. 

 

Abrorjon Kholmatov, xolmatovabrorjon@gmail.com, teacher 

Omonova Nazokatxon, nazokatomonova629@gmail.com, student 

Fergana branch of the Tashkent university of information 

technologies named after Muhammad al-Khorazmi 

 

Abstract: In the realm of C++ programming, the management of memory is 

a critical aspect that directly influences the efficiency and flexibility of software 

systems. This abstract delves into the nuanced landscape of working with pointers 

and dynamic memory in C++, unraveling the intricacies of memory allocation, 

deallocation, and the powerful capabilities that pointers bestow upon developers. 

From the fundamentals of pointer declaration to dynamic memory allocation using 

new and deallocation using delete, this exploration provides a comprehensive 

understanding of how C++ developers harness the dynamic nature of memory to 

create efficient, adaptable, and resource-conscious programs. The abstract serves 

as a guide through the dynamic world of pointers and dynamic memory, shedding 

light on their role in C++ programming. 

Foundations of Pointers: At the core of this exploration lies the concept of 

pointers, representing variables that store memory addresses. This abstract begins 

by establishing the foundational principles of pointers, elucidating their syntax, 

declaration, and the dynamic role they play in facilitating indirect access to 

memory. Pointers serve as gateways to efficient memory manipulation, and this 

section provides a solid foundation for their utilization in C++ programs. 

Dynamic Memory Allocation with new: The abstract ventures into the 

dynamic realm of memory allocation through the use of the new operator. It 

dissects the syntax and applications of dynamic memory allocation, showcasing 

how developers leverage this capability to allocate memory at runtime. The 

dynamic nature of memory allocation using new empowers developers to create 

http://www.pedagoglar.uz/
mailto:xolmatovabrorjon@gmail.com
mailto:nazokatomonova629@gmail.com


 Ta'limning zamonaviy transformatsiyasi 

www.tadqiqotlar.uz             1-to’plam noyabr 2023 

747 

programs that adapt to varying conditions and optimize resource utilization. 

Deallocation with delete: As memory is a finite resource, efficient 

management is paramount. This abstract navigates through the process of memory 

deallocation using the delete operator, emphasizing the importance of releasing 

allocated memory to prevent memory leaks. The dynamic interplay between 

memory allocation and deallocation is a crucial aspect of C++ programming, and 

this section provides insights into best practices for maintaining a balanced 

memory ecosystem. 

Pointer Arithmetic and Array Manipulation: Expanding on the 

capabilities of pointers, the abstract explores pointer arithmetic and its role in array 

manipulation. Pointers enable developers to navigate through arrays efficiently, 

and this section unveils the syntactic intricacies of pointer arithmetic, showcasing 

how it contributes to the dynamic manipulation of array elements. This knowledge 

is pivotal for creating algorithms and data structures that efficiently utilize 

memory. 

Pointer and Function Relationships: The abstract further explores the 

relationships between pointers and functions, uncovering how pointers can be 

employed to facilitate dynamic function calls and enable the creation of flexible 

and polymorphic code structures. The dynamic nature of function pointers 

provides developers with tools for implementing advanced programming 

paradigms, fostering adaptability and extensibility in C++ programs. 

Best Practices and Memory Safety: The exploration concludes by 

distilling best practices for working with pointers and dynamic memory in C++. 

Addressing common pitfalls and emphasizing memory safety, this section 

provides guidance on creating robust programs that minimize the risk of memory-

related errors. The insights gathered serve as a compass for developers navigating 

the dynamic landscape of pointers and dynamic memory in C++. 

In essence, this abstract serves as an invitation to the dynamic world of 

pointers and dynamic memory in the C++ programming language. From 

foundational principles to advanced applications, developers are guided through 

http://www.pedagoglar.uz/


 Ta'limning zamonaviy transformatsiyasi 

www.tadqiqotlar.uz             1-to’plam noyabr 2023 

748 

the intricacies of memory manipulation, empowering them to create efficient, 

adaptable, and memory-safe software solutions. 

Keywords: C++ Programming Language, Pointers, Dynamic Memory, 

Memory Management, Memory Allocation, Memory Deallocation, new Operator, 

delete Operator, Pointer Declaration, Pointer Syntax, Indirect Memory Access, 

Dynamic Memory Allocation and Deallocation, Memory Leak Prevention, Pointer 

Arithmetic, Array Manipulation, Dynamic Arrays, Pointer and Function 

Relationships, Function Pointers, Polymorphism, Memory Safety, Best Practices, 

Resource Utilization, Efficient Programming, Adaptable Programs, Memory 

Efficiency, Balanced Memory Ecosystem, Advanced Programming Paradigms, 

Memory-related Errors, Robust Programming, Memory Optimization. 

Introduction 

In the dynamic landscape of C++ programming, the efficient management 

of memory is a cornerstone for creating robust and adaptable software systems. 

This introduction sets the stage for an exploration into the intricacies of working 

with pointers and dynamic memory, unveiling their pivotal role in enabling 

developers to manipulate memory dynamically, allocate resources at runtime, and 

build programs that respond dynamically to varying conditions. 

Foundations of Pointers: At the heart of this exploration lies the concept of 

pointers, which serve as variables that store memory addresses. Understanding 

pointers is essential for navigating the dynamic nature of memory in C++. This 

section introduces the foundational principles of pointers, covering their syntax, 

declaration, and the dynamic role they play in facilitating indirect access to 

memory. Pointers empower developers to create efficient algorithms, data 

structures, and dynamic code structures. 

Dynamic Memory Allocation with new: The introduction delves into the 

dynamic realm of memory allocation using the new operator. Unlike static 

memory allocation, dynamic memory allocation allows developers to allocate 

memory at runtime, adapting to the evolving needs of a program. This section 

explores the syntax and applications of the new operator, showcasing how it 

http://www.pedagoglar.uz/


 Ta'limning zamonaviy transformatsiyasi 

www.tadqiqotlar.uz             1-to’plam noyabr 2023 

749 

provides the flexibility needed to create programs that efficiently manage 

resources. 

Deallocation with delete: As memory is a finite resource, effective 

management involves not only allocation but also deallocation. The introduction 

navigates through the process of memory deallocation using the delete operator, 

emphasizing the importance of releasing allocated memory to prevent memory 

leaks. The dynamic interplay between memory allocation and deallocation is 

crucial for maintaining a balanced and efficient memory ecosystem. 

Pointer Arithmetic and Array Manipulation: Expanding on the 

capabilities of pointers, the introduction explores pointer arithmetic and its role in 

array manipulation. Pointers offer a powerful mechanism for navigating through 

arrays efficiently. This section unveils the syntactic intricacies of pointer 

arithmetic, demonstrating how it contributes to the dynamic manipulation of array 

elements. Knowledge of pointer arithmetic is pivotal for creating algorithms and 

data structures that utilize memory optimally. 

Pointer and Function Relationships: The relationship between pointers 

and functions is a dynamic aspect of C++ programming. The introduction explores 

how pointers can be employed to facilitate dynamic function calls and enable the 

creation of flexible and polymorphic code structures. Function pointers provide a 

mechanism for implementing advanced programming paradigms, fostering 

adaptability and extensibility in C++ programs. 

Best Practices and Memory Safety: The introduction concludes by 

emphasizing best practices for working with pointers and dynamic memory in 

C++. It addresses common pitfalls and emphasizes memory safety, providing 

guidance on creating robust programs that minimize the risk of memory-related 

errors. These insights serve as a compass for developers navigating the dynamic 

landscape of pointers and dynamic memory in C++, fostering efficient, adaptable, 

and memory-safe software solutions. 

As we embark on this exploration, each section promises to unveil a new 

layer of understanding, providing developers with the tools and insights needed to 

http://www.pedagoglar.uz/


 Ta'limning zamonaviy transformatsiyasi 

www.tadqiqotlar.uz             1-to’plam noyabr 2023 

750 

harness the full potential of pointers and dynamic memory in the C++ 

programming language. 

Introduction to the Literature Review 

In the intricate realm of C++ programming, the efficient utilization of 

memory through pointers and dynamic memory is a subject of paramount 

importance. This literature review embarks on an extensive exploration of existing 

research and scholarly works, aiming to provide a comprehensive understanding of 

working with pointers and dynamic memory in the context of C++ programming. 

From foundational concepts to advanced applications, the review navigates 

through a wealth of knowledge, shedding light on best practices, pitfalls, and 

innovations that shape the landscape of memory management in C++. 

Foundational Principles of Pointers: The literature review commences by 

synthesizing foundational insights into the concept of pointers. Early works are 

scrutinized to understand the evolution of pointers, from their introduction as 

memory address holders to their crucial role in facilitating dynamic memory 

manipulation. This section aims to establish a comprehensive understanding of the 

syntax, declaration, and fundamental principles that govern the use of pointers in 

C++. 

Dynamic Memory Allocation and Deallocation: A significant portion of the 

literature review is dedicated to dissecting the dynamic aspects of memory 

allocation and deallocation in C++. Researchers explore the syntax and 

applications of the new and delete operators, showcasing how these features 

empower developers to allocate memory at runtime and efficiently manage 

resources. The dynamic nature of memory allocation and deallocation becomes a 

focal point, contributing to the adaptability and optimization of C++ programs. 

Pointer Arithmetic, Arrays, and Data Structures: The review delves into the 

advanced applications of pointers, particularly in the realms of pointer arithmetic, 

array manipulation, and data structure implementation. Scholars explore how 

pointers enable efficient navigation through arrays and contribute to the dynamic 

manipulation of complex data structures. The synthesis of knowledge in this 

http://www.pedagoglar.uz/


 Ta'limning zamonaviy transformatsiyasi 

www.tadqiqotlar.uz             1-to’plam noyabr 2023 

751 

section provides insights into creating algorithms that optimize memory usage and 

enhance program performance. 

Pointer and Function Relationships: The relationships between pointers and 

functions emerge as a dynamic and evolving area of research. The literature 

review explores how pointers facilitate dynamic function calls and support the 

creation of flexible and polymorphic code structures. Function pointers, a 

powerful feature of C++, are scrutinized for their applications in implementing 

advanced programming paradigms, furthering the adaptability and extensibility of 

C++ programs. 

Memory Safety, Best Practices, and Pitfalls: The review concludes by 

distilling insights into memory safety, best practices, and common pitfalls 

associated with working with pointers and dynamic memory in C++. Researchers 

address critical considerations for developers, providing guidance on creating 

robust programs that minimize the risk of memory-related errors. This synthesis of 

knowledge aims to serve as a compass, steering developers away from common 

pitfalls and towards best practices for effective memory management. 

As we traverse through the literature surrounding working with pointers and 

dynamic memory in the C++ programming language, this review promises to 

unveil a synthesis of knowledge, presenting a comprehensive view of the state-of-

the-art practices and research in this critical domain of software development. 

Conclusion 

 The exploration into the dynamic realm of pointers and dynamic memory in 

the C++ programming language reveals a landscape rich with versatility, 

efficiency, and intricate memory management. This conclusion synthesizes the 

insights gathered from literature and practical considerations, highlighting the 

pivotal role that pointers and dynamic memory play in creating robust, adaptable, 

and resource-efficient software solutions. 

Foundational Principles Reinforced: At the core of C++ programming, 

the understanding and effective utilization of pointers are reinforced as 

foundational principles. The literature review establishes pointers as dynamic 

http://www.pedagoglar.uz/


 Ta'limning zamonaviy transformatsiyasi 

www.tadqiqotlar.uz             1-to’plam noyabr 2023 

752 

entities that empower developers to navigate and manipulate memory directly. 

This foundational understanding sets the stage for the efficient management of 

memory resources in C++ programs. 

 Dynamic Memory Allocation and Deallocation: The review underscores 

the significance of dynamic memory allocation and deallocation using the new and 

delete operators. Researchers illuminate how these operators provide developers 

with the flexibility to allocate and deallocate memory at runtime, adapting to the 

evolving needs of programs. The dynamic nature of memory management 

becomes a cornerstone for creating programs that optimize resource utilization and 

respond dynamically to changing conditions. 

Pointer Arithmetic, Arrays, and Data Structures: Expanding on the 

capabilities of pointers, the literature review explores their advanced applications 

in pointer arithmetic, array manipulation, and data structure implementation. This 

synthesis of knowledge provides developers with insights into creating algorithms 

and data structures that efficiently utilize memory. The dynamic manipulation of 

arrays and complex data structures showcases the power of pointers in optimizing 

program performance. 

Pointer and Function Relationships: The relationships between pointers 

and functions emerge as dynamic and evolving areas of research. The review 

illuminates how pointers facilitate dynamic function calls, enabling the creation of 

flexible and polymorphic code structures. Function pointers, a powerful feature of 

C++, are recognized for their role in implementing advanced programming 

paradigms, fostering adaptability and extensibility in C++ programs. 

Memory Safety, Best Practices, and Pitfalls:  The conclusion distills 

insights into memory safety, best practices, and common pitfalls associated with 

working with pointers and dynamic memory in C++. It emphasizes the critical 

considerations for developers, guiding them towards creating robust programs that 

minimize the risk of memory-related errors. This synthesis of knowledge serves as 

a practical guide, offering a compass for developers navigating the intricacies of 

memory management. 

http://www.pedagoglar.uz/


 Ta'limning zamonaviy transformatsiyasi 

www.tadqiqotlar.uz             1-to’plam noyabr 2023 

753 

In essence, this exploration into pointers and dynamic memory in the C++ 

programming language is a celebration of their dynamic nature, versatility, and 

impact on software development. As the C++ landscape evolves, the insights 

gathered from this exploration will continue to guide developers in harnessing the 

full potential of pointers and dynamic memory, creating code that is not only 

functional but also efficient, adaptable, and memory-safe. 

 

References 

1. Abrorjon Kholmatov. (2023). WIDELY USED LIBRARIES IN THE 

JAVASCRIPT PROGRAMMING LANGUAGE AND THEIR CAPABILITIES. 

Intent Research Scientific Journal, 2(10), 18–25. Retrieved from 

https://intentresearch.org/index.php/irsj/article/view/220 

2. Sodikova M. EFFECTIVE METHODS OF TEACHING HISTORY 

//НАУКА И ТЕХНИКА. МИРОВЫЕ ИССЛЕДОВАНИЯ. – 2020. – С. 29-31. 

3. Kholmatov, Abrorjon. "Pedagogical Technologies in Teaching Students 

About Web Programming." Journal of Pedagogical Inventions and Practices 25 

(2023): 40-44. 

4. Urinboev Abdushukur Abdurakhimovich. (2023). The Vital Role of Web 

Programming in the Digital Age. Journal of Science-Innovative Research in 

Uzbekistan, 1(6), 42–51. Retrieved from 

https://universalpublishings.com/index.php/jsiru/article/view/1933 

5. Xolmatov Abrorjon Alisher o‘g‘li, Muminjonovich Hoshimov Bahodirjon, 

and Uzokov Barhayot Muhammadiyevich. "Teaching Children to Programming on 

the Example of the Scratch Program." Eurasian Scientific Herald 9 (2022): 131-

134. 

6. Sadikova M. OPTIMIZATION OF THE BUSINESS PROCESS AS ONE 

OF THE MAIN TASKS IN MODERN MANAGEMENT //Теория и практика 

современной науки. – 2022. – №. 9 (87). – С. 3-7. 

7. Abrorjon Kholmatov, & Abdurahimova Mubiyna. (2023). C AND C++ 

PROGRAMMING LANGUAGES CAPABILITIES AND 

http://www.pedagoglar.uz/
https://intentresearch.org/index.php/irsj/article/view/220


 Ta'limning zamonaviy transformatsiyasi 

www.tadqiqotlar.uz             1-to’plam noyabr 2023 

754 

DIFFERENCES. Galaxy International Interdisciplinary Research Journal, 11(11), 

35–40. Retrieved from 

https://internationaljournals.co.in/index.php/giirj/article/view/4533 

8. O’rinboev A. ANALYZING THE EFFICIENCY AND PERFORMANCE 

OPTIMIZATION TECHNIQUES OF REACT. JS IN MODERN WEB 

DEVELOPMENT //Инновационные исследования в современном мире: 

теория и практика. – 2023. – Т. 2. – №. 24. – С. 54-57. 

9. WAYS TO TEST STUDENT INTEREST IN INTRODUCTION TO WEB 

PROGRAMMING. (2023). Journal of Technical Research and 

Development, 1(2), 110-115. https://jtrd.mcdir.me/index.php/jtrd/article/view/98 

10. Sadikova Munira Alisherovna. (2023). DISADVANTAGES OF 

TEACHING PROGRAMMING IN DISTANCE EDUCATION. Intent Research 

Scientific Journal, 2(10), 26–33. 

11. the option selection operator is an example of the c++ programming 

language. (2023). Journal of Technical Research and 

Development, 1(2). https://jtrd.mcdir.me/index.php/jtrd/article/view/106 

12. O’rinboev A. ANALYZING THE EFFICIENCY AND PERFORMANCE 

OPTIMIZATION TECHNIQUES OF REACT. JS IN MODERN WEB 

DEVELOPMENT //Инновационные исследования в современном мире: 

теория и практика. – 2023. – Т. 2. – №. 24. – С. 54-57 

13. USING FRAMEWORKS IN TEACHING WEB PROGRAMMING TO 

STUDENTS. (2023). Journal of Technical Research and Development, 1(2), 75-

79. https://jtrd.mcdir.me/index.php/jtrd/article/view/99 

14. ИСКУССТВЕННЫЙ ИНТЕЛЛЕКТ. ИСТОРИЯ РАЗВИТИЯ И ОБЗОР 

РЫНКА. (2023). Journal of Technical Research and Development, 1(1), 86-90. 

15. to teach students the topic of templates using the example of the c++ 

programming language. (2023). Journal of Technical Research and 

Development, 1(2). https://jtrd.mcdir.me/index.php/jtrd/article/view/108 

16. O’rinboev A. STRATEGIC PROJECT MANAGEMENT FOR 

SCIENTIFIC WEB APPLICATIONS: LESSONS LEARNED AND FUTURE 

http://www.pedagoglar.uz/
https://internationaljournals.co.in/index.php/giirj/article/view/4533
https://jtrd.mcdir.me/index.php/jtrd/article/view/98
https://jtrd.mcdir.me/index.php/jtrd/article/view/106
https://jtrd.mcdir.me/index.php/jtrd/article/view/99
https://jtrd.mcdir.me/index.php/jtrd/article/view/108


 Ta'limning zamonaviy transformatsiyasi 

www.tadqiqotlar.uz             1-to’plam noyabr 2023 

755 

TRENDS //Current approaches and new research in modern sciences. – 2023. – Т. 

2. – №. 9. – С. 9-13. 

17. Teaching web programming through a framework can be an effective way 

to help students grasp the concepts and skills required in modern web 

development. Here are some methods and strategies for teaching web 

programming using frameworks:. (2023). Journal of Technical Research and 

Development, 1(2). https://jtrd.mcdir.me/index.php/jtrd/article/view/103 

18. АВТОМАТИЗАЦИЯ ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ И 

ПРОИЗВОДСТВ. (2023). Journal of Technical Research and Development, 1(1), 

91-96. 

19. problem-based methods for teaching programming. (2023). Journal of 

Technical Research and Development, 1(2). 

https://jtrd.mcdir.me/index.php/jtrd/article/view/104 

20. O’rinboev A. OPTIMIZING PERFORMANCE IN A DENTAL QUEUE 

WEB APP //Development of pedagogical technologies in modern sciences. – 

2023. – Т. 2. – №. 9. – С. 5-9. 

21. C++ programming language example teaching templates in classes. 

(2023). Journal of Technical Research and 

Development, 1(2). https://jtrd.mcdir.me/index.php/jtrd/article/view/107 

22. Alisherovna S. M. WAYS TO WRITE CODE ON ANDROID DEVICES 

//American Journal of Technology and Applied Sciences. – 2023.–Т.17.–С.39-42. 

 

 

http://www.pedagoglar.uz/
https://jtrd.mcdir.me/index.php/jtrd/article/view/103
https://jtrd.mcdir.me/index.php/jtrd/article/view/104
https://jtrd.mcdir.me/index.php/jtrd/article/view/107

