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Abstract 

Monte Carlo methods are used to calculate statistical behavior through the use 

of random number generators and probability density functions. They have been used 

extensively in medical physics for research in radiotherapy, designing technology, 

dosimetry, and advanced clinical applications. This paper provides a background on 

Monte Carlo methods and a review of radiation therapy physics and dosimetry. 

Additionally, there is a discussion of the different ways Monte Carlo methods are used 

in medical physics as well as a review of current research related to Monte Carlo 

methods. The final portion of this paper contains my own Monte Carlo simulation using 

the EGSnrc software toolkit to carry out two different simulations. One simulation 

serves as a basic introduction to using the software and demonstrates some of its 

capabilities, while the other is a more complex simulation that models a realistic 

scenario in medical physics. 

Keywords: Monte Carlo, medical physics, radiation transport, EGSnrc, 

simulation, dose, random numbers 

 

Introduction 

The Monte Carlo (MC) method is a widely used technique with a variety of 

applications. It can be difficult to provide an exact definition for MC methods due their 

diversity in application, therefore for our purposes it will be defined in the general 

context of medical physics as the following: Monte Carlo is a numerical method to 

solve equations or to calculate integrals based on random number sampling [1]. 

Random number generators (RNG) are required for a MC simulation in order to 

produce a large set of uncorrelated numbers. Since computer program outputs are 

inherently predictable, they must appear random. Therefore the result of these RNGs 

must be “pseudorandom”. A useful RNG for applications in radiation therapy must 

have the following 

attributes. 

• Have a period long enough such that it is not used several times, making the 

results of the MC simulation correlated. 
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• The numbers must be uniformly distributed in multiple dimensions. More 

specifically, random vectors of n-tuple random numbers must be uniformly distributed 

in n-dimensional space.  

One class of simple RNGs is the linear congruential generators which produces a 

sequence of integers In by the recurrence relationship 

Ij+1 = (aIj + c) mod m         (1) 

where a is a multiplier, c is an increment, and m is a modulus. The CERN program 

library is a good resource for finding high-quality RNGs and test programs to observe 

the created sequences in multiple dimensions [2]. 

The MC method can be used as a stochastic method for numerical integration 

which is capable of solving equations that would otherwise be impossible analytically 

[2]. Consider an area A enclosed by the function f (x) on the interval [a, b]. 

𝐴 =  ∫
𝑏

𝑎

𝑓(𝑥)𝑑𝑥 

 

Then a randomly generated number ηi uniformly distributed in the range [0,1] can be 

scaled to the range [a, b] by 

𝜉𝑖 = (𝑏 − 𝑎)𝜂𝑖 + 𝑎 

thus ξi is uniformly distributed in the range [a, b]. Then we can give a rough estimate 

of the area A by 

A1 = (b − a)f (ξ1 ) 

then repeating and improving this estimate by averaging the areas from two runs 

𝐴2 =
1

2
[(𝑏 − 𝑎)𝑓(𝜉2) + 𝐴1] =

𝑏−𝑎

2
[𝑓(𝜉1) + 𝑓(𝜉2)]           (2) 

Therefore the generalization becomes obvious after continuously repeating this 

process.  

𝐴𝑁 =
𝑏−𝑎

𝑁
∑𝑁

𝑖=1 𝑓(𝜉𝑖)               (3)  

In the limit N →∞, the estimated area AN converges to the real integral A. This 

method can be expanded to multiple dimensions. Assume f (x) is now a function that 

shall be integrated in a volume V with D dimensions. Now instead of random numbers 

for the MC integration, we need a set of random points (or vectors) uniformly 

distributed in the multidimensional volume V. If we have our randomly generated set 

ξ1 ...ξN , then this leads us to the basic theorem of MC integration which includes the 

uncertainty of the estimation 

∫ 𝑑𝑉𝑓(𝑥) ≈ 𝑉 < 𝑓(𝑥) > ±(𝑏 − 𝑎)√
<𝑓2(𝑥)>−<𝑓(𝑥)>2

𝑁
         (4) 

where Eq.(5) is the average function value and average function value squared 

respectively[4]. 
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< 𝑓(𝑥) >=
1

𝑁
∑𝑁

𝑖=1 𝑓(𝜉𝑖)     and < 𝑓2(𝑥) >=
1

𝑁
∑𝑁

𝑖=1 𝑓2(𝜉𝑖)      (5) 

Review of Radiation Therapy Physics and Dosimetry 

Radiation therapy uses ionizing radiation to harm and destroy cancer cells. 

Ionization is the process of a neutral atom either gaining or losing an electron, 

becoming a negatively or positively charged ion respectively. When charged particles 

such as protons, electrons, and α particles have a sufficient amount of kinetic energy 

capable of ionizing a neutral atom through collisions, they are known as directly 

ionizing radiation. Alternatively, neutral particles such as neutrons and photons capable 

of ionization are known as indirectly ionizing radiation [8]. 

The four primary processes responsible for ionization in radiotherapy are the 

Compton effect, photoelectric effect, coherent scattering, and pair production[5].  

It is important to define the characteristics of the beam emitting x-rays or γ-rays 

from a radioactive source. These beams contain a large number of photons in a variety 

of energies [6]. The fluence (Φ) of a beam, which has units of m−2 , is analogous to flux 

in electromagnetism. It is defined as the number of photons (dN ) that enter a cross-

sectional area (da) 

𝛷 =
𝑑𝑁

𝑑𝑎
                 (6) 

Then naturally the fluence rate (φ), also known as flux density, is defined as the 

fluence per unit time. 

𝜑 =
𝑑𝛷

𝑑𝑡
                (7) 

Radiation dosimetry deals with methods for quantitative determination of energy 

deposited in a medium through direct or indirect ionizing radiation [7]. A variety of 

quantities and key calculations will be defined in this section. Kerma, which stands for 

kinetic energy released per unit mass, is a non-stochastic quantity that is applicable for 

indirectly ionizing radiation such as photons and neutrons. It represents the energy 

transferred from indirectly ionizing radiation to the charged particles. It can be defined 

quantitatively as 

𝐾 = 𝛹(
𝜇𝑒𝑛

𝜌
) /(1 − 𝑔)             (8) 

where μen /ρ is the averaged mass-energy absorption coefficient and ḡ is the 

average fraction of an electron energy lost to radiative processes [8]. Kerma has units 

of J/kg or, in SI units, Gray (Gy). Kerma can also be divided into two components; 

inelastic collisions with atomic electrons (Kcol ) and radiative collisions with atomic 

nuclei (Krad ). Therefore Kerma can be written as a sum.  

K = Kcol + Krad         (9) 

Similarly cema, which stands for converted energy per unit mass, is a non-

stochastic quantity that is applicable for directly ionizing radiation such as electrons 

and protons. It represents the energy lost by charged particles (dEc ) in a unit of mass 
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(dm) of material. It can be described quantitatively by Eq. (10) and it has the same units 

as Kerma. 

𝑐 =
𝑑𝐸𝑐

𝑑𝑚
           (10) 

Absorbed dose (D) is applicable to both indirectly and directly ionizing radiation 

and can be defined as the mean energy (ε̄) imparted by ionizing radiation to matter of 

mass m. The absorbed dose is often usually derived from energy loss along a particle 

path-length segment, thus it’s related to particle fluence. It’s common to calculate the 

fluence differential in energy (ΦE ), which has units cm−2 MeV−1 [1]. When calculated 

through MC simulations, for either charged or uncharged particles, the absorbed dose 

in the medium (Dmed ) can be calculated by the following equations. 

(𝐷𝑚𝑒𝑑)𝐶𝑃𝐸 = ∫
𝐸𝑚𝑎𝑥

0
[𝛷𝐸]𝑚𝑒𝑑[𝑆𝑒𝑙(𝐸)/𝜌]𝑚𝑒𝑑𝑑𝐸     for charged particles           

(11) 

(𝐷𝑚𝑒𝑑)𝑇𝐶𝑃𝐸 = ∫
𝑘𝑚𝑎𝑥

0
𝑘[𝛷𝑘]𝑚𝑒𝑑[𝜇𝑒𝑛(𝑘)/𝜌]𝑚𝑒𝑑𝑑𝑘   for photons                        

(12) 

Eq(11) and Eq(12) can also be used to calculate the absorbed dose in a detector 

(Ddet ). The acronyms over the equal signs CPE and TCPE stand for charge-particle 

equilibrium and transient charged-particle equilibrium respectively. Charged-particle 

equilibrium exists for a volume V if each charged particle of a given type and energy 

leaving the volume is replaced by an identical particle entering [12]. This is for lower 

energy particles, typically below 500 keV, since attenuation can be neglected. If there 

is no CPE then the quantity calculated in Eq. (11) is not absorbed dose, instead it is 

cema (C). Transient charged-particle equilibrium occurs for higher energy particles 

since attenuation causes there to be less charged particles produced with increased 

depth [7]. If there is no TCPE then the quantity calculated is kerma (K). Additionally 

it is important to note k as the photon energy and Sel/ρ as the mass electronic stopping 

power (additional info can be found in ICRU Report 85 [1]). 

Using Eq (11) and Eq (12), the Bragg-Gray stopping power ratio can be defined 

as  

𝑆𝐵𝐺
𝑚𝑒𝑑,𝑑𝑒𝑡 =

∫
𝐸𝑚𝑎𝑥

0
[𝛷𝐸]𝑚𝑒𝑑[𝑆𝑒𝑙(𝐸)/𝜌]𝑚𝑒𝑑𝑑𝐸

∫
𝐸𝑚𝑎𝑥

0
[𝛷𝐸]𝑚𝑒𝑑[𝑆𝑒𝑙(𝐸)/𝜌]𝑑𝑒𝑡𝑑𝐸

       (13) 

where we use the Bragg-Gray assumption which says that the cavity (detector) is so 

small that it does not disturb the fluence of the charged particles when inserted into the 

medium [5]. This gives us the condition Φmed ≈ Φdet . It is also assumed that the primary 

charged-particle fluence does not include secondary or higher-order particles produced 

by collisions with the primary particles. 

Monte Carlo Methods in Medical Physics 
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Monte Carlo methods help both clinical physicists and researchers in better 

understanding dose calculations and modeling a variety of radiation sources. This 

section explores the use of Monte Carlo methods in dosimetry, external beam source 

modeling, and for advanced treatment planning.  

When determining dose calculations experimentally, there are often quantities 

that are difficult or even impossible to calculate analytically. Therefore these quantities 

need to be determined numerically through the use of MC methods. In radiation 

dosimetry, detectors are typically composed of several different components. The 

materials of each of these components differ substantially from the medium where the 

absorbed dose is to be determined [8]. This leads to a well established problem that is 

characterized in terms of perturbation factors. Inserting a detector in a medium causes 

a change in the electron spectrum within the detector radiation sensitive volume 

relative to that in the homogeneous medium. This effect is known as perturbation [1]. 

Now taking into account these perturbation factors, and assuming the Bragg-Gray 

assumption is valid, the absorbed dose of the medium becomes 

𝐷𝑚𝑒𝑑 = 𝐷𝑑𝑒𝑡 ⋅ 𝑠𝑚𝑒𝑑,𝑑𝑒𝑡(𝑄) ⋅ 𝑝𝑑𝑒𝑡(𝑄)       (14) 

where pdet (Q) is the perturbation factor of the detector and Q is a given radiation beam 

quality. A major constraint imposed on the perturbation factors is that they are small 

and independent of each other.  
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